Unit1 Real Numbers

1. Define rational numbers.

The number of the form $\frac{p}{q}$ where p,q integers and $q \neq 0$ are called rational numbers. For example, $\frac{2}{9}$, $\frac{25}{16}$

$$Q = \left\{ x | x = \frac{p}{q} , \qquad p, q \in z \land q \neq 0 \right\}$$

2. Define irrational numbers.

The number which cannot be express of the form $\frac{p}{q}$ where p,q integers and $q \neq 0$ are called irrational numbers. For example, $e,\pi,\sqrt{2}$

$$Q' = \left\{ x \mid x \neq \frac{p}{q} \right. , \qquad p, q \in z \, \land q \neq 0 \right\}$$

3. Define set of real numbers.

The union of the set of rational numbers and irrational numbers is known as the set of real numbers. It is denoted by R. i. e. $\mathbb{R} = Q \cup Q'$

4. Explain decimal representation of rational number?

The decimal representations of rational numbers are of two types.

- (i) Terminating Decimal Fractions
- (ii) Recurring and Non-Terminating Decimal Fractions

(i) Terminating Decimal Fractions

The decimal number with a finite number of digits after the decimal point is called a terminating decimal number. For example,

$$\frac{2}{5} = 0.4$$
 and $\frac{3}{8} = 0.375$

(ii) Recurring and Non-Terminating Decimal Fractions

The decimal numbers with an infinitely repeating pattern of digits after the decimal point are called non-terminating and recurring decimal numbers. For example,

$$\frac{1}{3} = 0.333 \dots = 0.\overline{3}$$
 (3 repeats infinitely)
$$\frac{1}{6} = 0.166 \dots = 0.1\overline{6}$$
 (6 repeats infinitely)
$$\frac{22}{7} = 3.142857142857 \dots = 3.\overline{142857}$$
 (the pattern 142857 repeats infinitely)

Prepared By: M. Tayyab, SSE (Math) Govt Christian High School, Daska. Mobile: 03338114798

5. What are irrational numbers in terms of their decimal representation?

Decimal numbers that do not repeat a pattern of digits after the decimal point continue indefinitely without terminating.

Non-terminating and non-recurring decimal numbers are known as irrational numbers.

Examples:

- $\pi = 3.1415926535897932...$
- $e = 2.71828182845904 \dots$
- $\rightarrow \sqrt{2} = 1.41421356237309 \dots$

Note:

- $e=2.7182\ldots$ is called Euler's Number. (i)
- $Rational\ number\ +\ Irrational\ number\ =\ Irrational\ number.$ (ii)
- Rational number $(\neq 0) \times Irrational number = Irrational number$. (iii)
- The product of two irrational numbers can be either rational or irrational, depending on the numbers (iv) involved.

6. Explain the concept of radicals and radicands.

If n is a positive integer greater than 1 and a is a real number, then any real number x such that $x^n = a$ is called (radical) the nth root of a, and in symbols is written as

$$x^{n} = a$$

$$[x^{n}]^{1/n} = [a]^{1/n}$$

$$x = a^{1/n}$$

$$x = \sqrt[n]{a}$$

In the radical $\sqrt[n]{a}$, the symbol $\sqrt{}$ is called the **radical sign**, n is called the **index** of the radical and the real number a under the radical sign is called the radicand or base.

7. Define surd.

An irrational radical with rational radicand is called a surd. For example,

- $\rightarrow \sqrt{5}$ is a surd because $\sqrt{5}$ does not give a whole number.
- \triangleright $\sqrt{9}$ is **not** a surd because it simplifies to 3 (a whole number).
- $\rightarrow \sqrt{3}$, $\sqrt[3]{7}$ are surds.
- $\triangleright \sqrt{\pi}$ and \sqrt{e} are **not** surds.

Note: Every **surd** is an **irrational number**, but not every **irrational number** is a **surd** (e.g., $\sqrt{\pi}$ is irrational but not a surd) and the product of two conjugate surds is a rational number.

8. Define monomial surd.

A surd which contains a single term is called a monomial surd. For example, $\sqrt{2}$, $\sqrt{3}$

9. Define binomial surd.

A surd which contains sum of two monomial surds or sum of a monomial surd and a rational number is called a binomial surd. For example, $\sqrt{2} + \sqrt{7}$, $\sqrt{2} + 5$

10. Define conjugate surd.

Conjugate surd of $\sqrt{a} + \sqrt{b}$ is defined as $\sqrt{a} - \sqrt{b}$.

11. What are the additive properties of real numbers?

Name of the Property	\forall a, b, c $\in \mathbb{R}$	Examples
Closure	$a+b \in R$	$2+3=5\in R$

Prepared By: M. Tayyab, SSE (Math) Govt Christian High School, Daska. Mobile: 03338114798 Page 2 of 5

Commutative	a + b = b + a	2 + 5 = 5 + 2 7 = 7
Associative	a + (b+c) = (a+b) + c	2 + (3 + 5) = (2 + 3) + 5 $2 + 8 = 5 + 5$ $10 = 10$
Identity	a+0=a=0+a	5 + 0 = 5 = 0 + 5
Inverse	a + (-a) = (-a) + a = 0	6 + (-6) = (-6) + 6 = 0

12. What are the multiplicative properties of real numbers?

Name of the Property	∀ a, b, c ∈ ℝ	Examples	
Closure	$ab \in R$	$2 \times 5 = 10 \in R$	
Commutative	ab = ba	$2 \times 5 = 5 \times 2$ $10 = 10$	
Associative	a(bc) = (ab)c	$2 \times (3 \times 5) = (2 \times 3) \times 5$ $2 \times 15 = 6 \times 5$ 30 = 30	
Identity	$a \times 1 = a = 1 \times a$	$5 \times 1 = 5 = 1 \times 5$	
Inverse	$a \times \frac{1}{a} = \frac{1}{a} \times a = 1$	$6 \times \frac{1}{6} = \frac{1}{6} \times 6 = 1$	

Note:

- (i) 0 and 1 are the additive and multiplicative identities of real numbers, respectively.
- (ii) $0 \in R$ has no multiplicative inverse.

13. What are the distributive properties of real numbers?

Property yalo (G115 C	Mathematical Expression
Left Distributive Property of Multiplication over Addition	a(b+c) = ab + ac
Left Distributive Property of Multiplication over Subtraction	a(b-c) = ab - ac
Right Distributive Property of Multiplication over Addition	(a+b)c = ac + bc
Right Distributive Property of Multiplication over Subtraction	(a-b)c = ac - bc

14. What are the properties of equality of real numbers?

No.	Property Name	Mathematical Expression
i	Reflexive Property	$\forall a \in R$,
	Nonexito Fraperty	a = a
	Symmetric Property	$\forall a, b \in R$,
ii		a = b
		$\Rightarrow b = a$
	Transitive Property	$\forall a, b, c \in R$,
iii		$a = b \wedge b = c$
		$\Rightarrow a = c$
	Additive Property	$\forall a, b, c \in R$,
iv		a = b
		$\Rightarrow a + c = b + c$
	Multiplicative Property	$\forall a, b, c \in R$,
V		a = b
		$\Rightarrow ac = bc$

Prepared By: M. Tayyab, SSE (Math) Govt Christian High School, Daska. Mobile: 03338114798

		$\forall a, b, c \in R$,	
vi	Cancellation Property w.r.t Addition	a+c=b+c	
		$\Rightarrow a = b$	
		$\forall a, b, c \in R$,	
vii Cancellation Property w.r.t Multiplication	ac = bc		
		$\Rightarrow a = b$	

15. State and explain the Multiplicative Property of order with examples

	State and explain the Multiplicative Property of order with examples.			
No.	Property Name	Mathematical Expression		
i	Trichotomy Property	$\forall a, b \in R$,		
		Either a = b or a > b or a < b		
	Transitive Property	$\forall a, b, c \in R$,		
ii				
		$ \Rightarrow a < b \land b < c \implies a < c $		
	Additive Property	$\forall a, b, c \in R$,		
iii		$\triangleright a > b \implies a + c > b + c$		
		$ ightharpoonup a < b \implies a + c < b + c$		
	Multiplicative Property	$\forall a, b, c \in R$,		
		$\Rightarrow a > b \implies ac > bc \text{ if } c > 0$		
		ightharpoonup a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b > a < b		
iv		$\rightarrow a > b \implies ac < bc \text{ if } c < 0$		
		$ \begin{array}{cccc} \triangleright & a > b & \implies & ac > bc \text{ if } c > 0 \\ \triangleright & a < b & \implies & ac < bc \text{ if } c > 0 \\ \triangleright & a > b & \implies & ac < bc \text{ if } c < 0 \\ \triangleright & a < b & \implies & ac > bc \text{ if } c < 0 \\ \end{array} $		
		$\Rightarrow a > b \land c > d \Longrightarrow ac > bd$		
		$ ightharpoonup a < b \wedge c < d \Longrightarrow ac < bd$		
		$\forall a, b, c \in R$,		
	Division Property	$\Rightarrow a > b \implies \frac{a}{c} > \frac{b}{c} \text{ if } c > 0$		
		$\Rightarrow a < b \implies \frac{a}{c} < \frac{b}{c} \text{ if } c > 0$		
V		$ \begin{array}{ccc} \triangleright & a > b & \Longrightarrow & \frac{a}{c} > \frac{b}{c} \text{ if } c > 0 \\ \triangleright & a < b & \Longrightarrow & \frac{a}{c} < \frac{b}{c} \text{ if } c > 0 \\ \triangleright & a > b & \Longrightarrow & \frac{a}{c} < \frac{b}{c} \text{ if } c < 0 \\ \triangleright & a < b & \Longrightarrow & \frac{a}{c} > \frac{b}{c} \text{ if } c < 0 \\ \end{array} $		
		$\Rightarrow a < b \implies \frac{a}{c} > \frac{b}{c} \text{ if } c < 0$		
		$\forall a, b, c \in R$ and have same sign		
vi	Reciprocal Property	$\Rightarrow a > b \Rightarrow \frac{1}{a} < \frac{1}{b}$		
		$ \begin{array}{ccc} $		

16. Write the Laws of Radicals and Indices.

	Laws of Radical		Laws of Indices
(i)	$\sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b}$	(i) (ii)	$a^m \cdot a^n = a^{m+n}$ $(a^m)^n = a^{mn}$
(ii)	$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$	(iii)	$(ab)^n = a^n a^n$
(iii)	$\sqrt[n]{a^m} = \left(\sqrt[n]{a}\right)^m$	(iv)	$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$ $\frac{a^m}{a^n} = a^{m-n}$
(iv)	$\left(\sqrt[n]{a}\right)^n = \left(a^{\frac{1}{n}}\right)^n = a$	(v)	$\frac{a^m}{a_n^n} = a^{m-n}$
	() ()	(vi)	$a^0 = 1$

17. Is $\boldsymbol{0}$ a rational number? Explain.

Yes, 0 is a rational number because it can be written in the form $\frac{p}{q}$, where p and q are integers and $q \neq 0$.

Prepared By: M. Tayyab, SSE(Math) Govt Christian High School, Daska. Mobile: 03338114798 Page 4 of 5

For example, $\frac{0}{1}$, $\frac{0}{2}$, $\frac{0}{3}$, etc., are valid rational numbers. Since 0 divided by any nonzero integer is always 0, it satisfies the definition of a rational number.

18. What is the historical development of number systems?

1. Sumerians (4500-1900 BCE):

- Used a base-60 (sexagesimal) number system.
- Symbols: Cone (1), Bead (10), Large cone (60), etc.
- Used for counting and astronomy.

2. Egyptians (3000-2000 BCE):

- Used a base-10 (decimal) system.
- Wrote numbers left to right, starting with the largest value.
- Example: 2525 = 2000 + 500 + 20 + 5.

3. Romans (500 BCE-500 CE):

- Used Roman numerals: I (1), V (5), X (10), L (50), C (100), D (500), M (1000)
- Designed for trade and communication.

4. Indians (500-1200 CE):

- Invented zero (0).
- Developed the decimal number system.
- Introduced Indo-Arabic numerals (1–9, 0), which we use today.

5. Arabs (800-1500 CE):

- Spread Arabic numerals to Europe.
- Al-Khwārizmi introduced algebra.
 Preserved and shared mathematical knowledge with the West. I Stian Daska)

6. Modern Era (1700-present):

- Introduced systems like:
 - Binary system (base-2)
 - Hexadecimal system (base-16)
- Arabic numeral system (0-9) became the global standard.
- Modern number systems expanded to include real numbers.

19. What was the contribution of Indian mathematicians to real numbers?

- Period: 500-1200 CE
- Contributions:
 - o Invented zero (0)
 - Refined the decimal (base-10) system
 - Developed Indo-Arabic numerals (basis of today's number system)

20. How did Arabs contribute to modern number systems?

- Period: 800–1500 CE
- Contributions:
 - Spread Arabic numerals (0–9) to Europe
 - Al-Khwārizmi introduced algebra
 - o Helped shape modern mathematics through translations and innovations.

Prepared By: M. Tayyab, SSE (Math) Govt Christian High School, Daska. Mobile: 03338114798 Page 5 of 5