Unit 3

Set and Functions

Sr. No.	Questions	A	В	С	D
1	The set builder form of the set $\left\{1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \cdots \right\}$ is:	$\left\{x x=\frac{1}{n},n\in W\right\}$	$\left\{x x=\frac{1}{2n+1},n\in W\right\}\checkmark$	$\left\{x x=\frac{1}{n+1},n\in W\right\}$	$\{x x=2n+1, n\in W\}$
2	If $A = \{\}$, then $P(A)$ is:	{}	{1}	{{ }}✓	φ
3	If $U = \{1, 2, 3, 4, 5\}$, $A = \{1, 2, 3\}$ and $B = \{3, 4, 5\}$, then $U - (A \cap B)$ is:	{1, 2, 4, 5}✓	{2,3}	{1, 3, 4, 5}	{1, 2, 3}
4	If A and B are overlapping sets, then $n(A \cap B)$ is equal to:	n(A)	n(B)	$A \cap B$	$n(A) - n(A \cap B)$
5	If $A \subseteq B$ and $B - A \neq \varphi$, then $n(B - A)$ is equal to:	0	n(B)	n(A)	$n(B) - n(A)\checkmark$
6	If $n(A \cup B) = 50$, $n(A) = 30$, and $n(B) = 35$, then $n(A \cap B) =$:	23	15✓	9	40
7	If $A = \{1, 2, 3, 4\}$ and $B = \{x, y, z\}$, then the Cartesian product of A and B contains exactly elements.	13	12✓	10	6
Mu 8	If $f(x) = x^2 - 3x + 2$, then the value of $f(a+1)$ is equal to:	yyab (ristian a ² + 2a + 1	Daska a²-ay
9	Given that $f(x) = 3x + 1$, if $f(x) = 28$, then the value of x is:	9√	27	3	18
10	Let $A = \{1,2,3\}$ and $B = \{a,b\}$; two non-empty sets and $f:A \rightarrow B$ be a function defined as $f = \{(1,a),(2,a),(3,b)\}$, then which of the following statements is true?	f is injective	f is surjective√	f is bijective	f is into only

Solution of MCQs

1	Elements are odd reciprocals $\Rightarrow \frac{1}{2n+1}$
2	Power set of empty set $= ig\{ \{ \ \} ig\}$ or $\{ arphi \}$
3	$A \cap B = \{3\}, U - A \cap B = \{1, 2, 4, 5\}$

Prepared By: M. Tayyab, SSE (Math) Govt Christian High School, Daska. Mobile: 03338114798

	$n(A \cap B) = n(A) - n(A \cap B)$						
	Let $A = \{1.2\}$						
4	and $B = \{1\}$						
	$A \cap B = \{1\}$						
	$Now \ n(A \cap B) = n(A) - n(A \cap B)$						
	1 = 2 - 1						
	1 = 1						
5	B - A = elements only	in	B				
	$\Rightarrow n(B) - n(A)$						
6	$n(A \cup B) = 50,$ $n(A) = 30,$ and $n(B) = 35,$	then	$n(A \cap B) = ?$				
	$n(A \cup B) = n(A) + n(B) - n(A \cap B)$						
	$50 = 30 + 35 - n(A \cap B)$						
	$n(A \cap B) = 30 + 35 - 50$						
	$n(A \cap B) = 15$						
7	$4 \ elements \times 3 \ elements = 12$						
	f(a + 1) = ?						
	$f(x) = x^2 - 3x + 2$						
8	$f(a+1) = (a+1)^2 - 3(a+1) + 2$						
0	$f(a+1) = (a)^2 + 2(a)(1) + (1)^2 - 3a - 3 + 2$						
	$f(a+1) = a^2 + 2a + 1 - 3a - 3 + 2$						
	$f(a+1) = a^2 - a$						
9	$f(x) = 3x + 1 = 28 \Rightarrow 3x = 28 - 1 \Rightarrow x = 9$						
10	Every element in B is mapped, so f is surjective.						

Muhammad Tayyab (GHS Christian Daska)

Prepared By: M. Tayyab, SSE (Math) Govt Christian High School, Daska. Mobile: 03338114798

Website: https://hira-science-academy.github.io