Unit 7

Coordinate Geometry

Sr. No.	Questions	A	В	С	D
1	The equation of a straight line in the slope-intercept form is written as:	y = m(x+c)	$y - y_1 = m(x - x_1)$	$y = c + mx\checkmark$	ax + by + c = 0
2	The gradients of two parallel lines are:	equal√	zero	negative reciprocals of each other	always undefined
3	If the product of the gradients of two lines is -1 , then the lines are:	parallel	perpendicular√	collinear	coincident
4	Distance between two points $P(1,2)$ and $Q(4,6)$ is:	5✓	6	$\sqrt{13}$	4
5	The midpoint of a line segment with endpoints $(-2,4)$ and $(6,-2)$ is:	(4,2)	(2,1) ✓	(1,1)	(0,0)
6	A line passing through points $(1,2)$ and $(4,5)$ is:	y = x + 1	y = 2x + 3	y = 3x - 2	y = x + 2
7	The equation of a line in point-slope form is:	y = m(x+c)	$y-y_1 = m(x-x_1)\checkmark$	y = c + mx	ax + by + c = 0
8	2x + 3y - 6 = 0 in the slope-intercept form is:	$y = \frac{-2}{3}x + 2\checkmark$	$y = \frac{2}{3}x - 2$	$y = \frac{2}{3}x + 1$	$y = \frac{-2}{3}x - 2$
9	symmetric form is:	$\frac{x}{a} + \frac{y}{b} = 1$	$\frac{x - x_1}{1} + \frac{y - y_1}{m} = \frac{z - z_1}{1}$	$\frac{x - x_1}{\cos \alpha} = \frac{y - y_1}{\sin \alpha} = r \checkmark$	$y - y_1 = m(x - x_1)$
10	The equation of a line in normal form is:	y = mx + c	$\frac{x}{a} + \frac{y}{b} = 1$	$\frac{x - x_1}{\cos \alpha} = \frac{y - y_1}{\sin \alpha}$	$x\cos\alpha + y\sin\alpha = p\checkmark$

Solution of MCQs

1	Slope-Intercept Form is $y = c + mx$ Also written as $y = mx + c$.		
2	Parallel lines have equal slopes.		
3	Perpendicular lines: product of slopes $=-1$		
	Distance between $P(1,2)$ and $Q(4,6)$		
4	$ \overline{PQ} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$		
	$=\sqrt{(4-1)^2+(6-2)^2}$		
	$=\sqrt{(3)^2+(4)^2}$		
	$=\sqrt{9+16}$		
	$=\sqrt{25}$		
	= 5		

Prepared By: M. Tayyab, SSE (Math) Govt Christian High School, Daska. Mobile: 03338114798

	Midpoint of $(-2,4)$ and $(6,-2)$:			
5	$M(x,y) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$ $= \left(\frac{-2 + 6}{2}, \frac{4 + (-2)}{2}\right)$ $= \left(\frac{4}{2}, \frac{2}{2}\right)$ $= (2,1)$			
	Slope of line from $(1,2)$ to $(4,5)$:			
	$m = \frac{y_2 - y_1}{}$			
	$x_2 - x_1$			
	$m = \frac{y_2 - y_1}{x_2 - x_1}$ $m = \frac{5 - 2}{4 - 1}$ $m = \frac{3}{3}$			
	3			
6	$m=\frac{1}{3}$			
	m=1 Now Point Slope Form			
	$y - y_1 = m(x - x_1)$			
	$y - 1 = h(x - x_1)$ y - 2 = 1(x - 1)			
	y = x - 1 + 2			
	y = x + 1			
7	Equation of a line in point-slope form is			
	$y - y_1 = m(x - x_1)$ $2x + 3y - 6 = 0$			
	$\Rightarrow 3y = -2x + 6$			
	2x + 6			
VI	hammad Tayyab (GHS Christian Daska			
	$y - \frac{1}{2} + \frac{1}{2}$			
	-2x			
	$y = \frac{-2x}{3} + 2$ $\frac{x - x_1}{3} = \frac{y - y_1}{3} = r$			
9	$\frac{x-x_1}{\cos\alpha} = \frac{y-y_1}{\sin\alpha} = r$			
10	$x\cos\alpha + y\sin\alpha = P$			
T.				

Prepared By: M. Tayyab, SSE (Math) Govt Christian High School, Daska. Mobile: 03338114798

Website: https://hira-science-academy.github.io