Unit 10 Simple Harmonic Motion and Waves

Numerical Problems

Important formulas:

- ightharpoonup Time period of simple pendulum $T=2\pi\sqrt{\frac{l}{g}}$
- > Speed of wave $v = f\lambda$
- ightharpoonup Time period $T = \frac{1}{f}$
- > Speed $v = \frac{d}{t}$

10.1 The time period of a simple pendulum is $2\,s$. What will be its length on the Earth? What will be its length on the Moon if $g_m={g_e/}_6$? where = $10\,ms^{-2}$. (ALP)

Given Data

$$Time\ period = T = 2\ s$$

$$Value\ of\ g\ on\ Earth = g_e = 10\ ms^{-2}$$

$$Value\ of\ g\ on\ moon = g_m = \frac{g_e}{6}$$

$$g_m = \frac{10}{6}$$

$$g_m = 1.67\ ms^{-2}$$

To Find

Length of pendulum on Earth = l_e = ? Length of pendulum on Moon = l_m = ?

Solution

By using formula of time period of simple pendulum

$$T = 2\pi \sqrt{\frac{l_e}{g_e}}$$
$$\frac{T}{2\pi} = \sqrt{\frac{l_e}{g_e}}$$

Taking square on both sides

$$\left(\frac{T}{2\pi}\right)^{2} = \left(\sqrt{\frac{l_{e}}{g_{e}}}\right)^{2}$$

$$\frac{T^{2}}{4\pi^{2}} = \frac{l_{e}}{g_{e}}$$

$$\frac{T^{2}g_{e}}{4\pi^{2}} = l_{e}$$

$$l_{e} = \frac{T^{2}g_{e}}{4\pi^{2}}$$

$$l_{e} = \frac{(2)^{2}(10)}{4(3.14)^{2}}$$

$$l_{e} = \frac{40}{39.44}$$

$$l_{e} = 1.01 m$$

Now again by using formula of time period of simple pendulum

$$T = 2\pi \sqrt{\frac{l_m}{g_m}}$$

$$\frac{T}{2\pi} = \sqrt{\frac{l_m}{g_m}}$$

Taking square on both sides

$$\left(\frac{T}{2\pi}\right)^2 = \left(\sqrt{\frac{l_m}{g_m}}\right)^2$$

$$\frac{T^2}{4\pi^2} = \frac{l_m}{g_m}$$

$$\frac{T^2g_m}{4\pi^2} = l_m$$

$$l_m = \frac{T^2g_m}{4\pi^2}$$

$$l_m = \frac{(2)^2(1.67)}{(4)(3.14)^2}$$

$$l_m = \frac{6.68}{39.44}$$

$$l_m = \mathbf{0.17} \ \mathbf{m}$$

10.2 A pendulum of length $0.99\,m_{\odot}$ taken to the Moon by an astronaut. The period of the pendulum is $4.9\,s$. What is the value of g on the surface of the Moon? (ALP)

Given Data

Length of perdulum =
$$l = 0.99 m$$

Time period = $T = 4.9 s$

To Find

Value of g on
$$Moon = g_m = ?$$

Solution

By using formula of time period of simple pendulum

$$T = 2\pi \sqrt{\frac{l}{g_m}}$$

$$\frac{T}{2\pi} = \sqrt{\frac{l}{g_m}}$$

Taking square on both sides

$$\left(\frac{T}{2\pi}\right)^{2} = \left(\sqrt{\frac{l}{g_{m}}}\right)^{2}$$

$$\frac{T^{2}}{4\pi^{2}} = \frac{l}{g_{m}}$$

$$T^{2}g_{m} = 4\pi^{2}l$$

$$g_{m} = \frac{4\pi^{2}l}{T^{2}}$$

$$g_{m} = \frac{4(3.14)^{2}(0.99)}{(4.9)^{2}}$$

$$g_{m} = \frac{39.044}{24.01}$$

$$g_{m} = 1.63 \text{ ms}^{-2}$$

10.3 Find the time periods of a simple pendulum of $1\ metre$ length, placed on Earth and on Moon. The value of g on the surface of Moon is $\left(\frac{1}{6}\right)^{th}$ of its value on Earth, where g is $10\ ms^{-2}$. (ALP) Given Data

Length of pendulum =
$$l = 1 m$$

Value of g on Earth = $g_e = 10 ms^{-2}$
Value of g on Moon = $g_m = \frac{g_e}{6}$

$$g_m = \frac{10}{6}$$

$$g_m = 1.67 \ ms^{-2}$$

To Find

Time period on Earth = T_e = ? Time period on Moon = T_m = ?

Solution

By using formula of time period

$$T_e = 2\pi \sqrt{\frac{l}{g_e}}$$
 $T_e = 2(3.14) \sqrt{\frac{1}{10}}$
 $T_e = (6.28)(0.3162)$
 $T_e = 1.99 \text{ s}$
 $T_e \approx 2 \text{ s}$

Now again by using formula of time period

$$T_m = 2\pi \sqrt{\frac{l}{g_m}}$$
 $T_m = 2(3.14) \sqrt{\frac{1}{1.67}}$
 $T_m = (6.28)(0.7738)$
 $T_m = 4.85 s$
 $T_m \approx 4.9 s$

10.4 A simple pendulum completes one vibration in two seconds. Calculate its length, when $g=10\ ms^{-2}$. (ALP)

Given Data

$$Time\ period = T = 2\ s$$
 $Gravitational\ acceleration\ = g = 10\ m$

To Find

Length of pendulum =
$$l$$

Solution

By using formula of time period of simple pendulum

Taking square on both sides

$$\left(\frac{T}{2\pi}\right)^2 = \left(\sqrt{\frac{l}{g}}\right)^2$$

$$\frac{T^2}{4\pi^2} = \frac{l}{g}$$

$$\frac{gT^2}{4\pi^2} = l$$

$$l = \frac{gT^2}{4\pi^2}$$

$$l = \frac{(10)(2)^2}{(4)(3.14)^2}$$

$$l = \frac{(10)(4)}{(4)(9.8596)}$$

$$l = \frac{40}{39.4384}$$
$$l = 1.02 m$$

10.5 If $100\ waves$ pass through a point of a medium in $20\ seconds$, what is the frequency and the time period of the wave? If its wavelength is 6cm, calculate the wave speed.

Given Data

No. of waves =
$$n = 100$$

Time aken = $t = 20$ s
Wavelength = $\lambda = 6$ cm
 $\lambda = 6 \times 10^{-2}$ m
 $\lambda = 0.06$ m

To Find

Frequency =
$$f$$
 = ?
Time period = T = T Wave speed = T = T

Solution

For frequency, we use

$$f = \frac{t}{100}$$

$$f = \frac{100}{20}$$

$$f = 5 Hz$$

For time period, we use

$$T = \frac{1}{f}$$

$$T = \frac{1}{5}$$

$$T = \mathbf{0.2} \text{ s}$$

For wave speed, we use

$$v = f\lambda$$

 $v = (5)(0.06)$
 $v = 0.3 ms^{-1}$

10.6 A wooden bar vibrating into the water surface in a ripple tank has a frequency of $12\ Hz$. The resulting wave has a wavelength of $3\ cm$. What is the speed of the wave?

Given Data

Frequency =
$$f = 12 \text{ Hz}$$

Wavelength = $\lambda = 3 \text{ cm}$
 $\lambda = 3 \times 10^{-2} \text{m}$
 $\lambda = 0.03 \text{ m}$

To Find

$$Wave\ speed = v = ?$$

Solution

For wave speed, we use

$$v = f\lambda$$

 $v = (12)(0.03)$
 $v = 0.36 ms^{-1}$

10.7 A transverse wave produced on a spring has a frequency of 190~Hz and travels along the length of the spring of 90~m, in 0.5~s. (a) What is the period of the wave? (b) What is the speed of the wave? (c) What is the wavelength of the wave?

Given Data

$$Frequency = f = 190 Hz$$

$$Length = d = 90 m$$

 $Time = t = 0.5 s$

To Find

Time period =
$$T = ?$$

Wave speed = $v = ?$
Wavelength = $\lambda = ?$

Solution

For time period, we use

$$T = \frac{1}{f}$$

$$T = \frac{1}{190}$$

$$T = 5.26 \times 10^{-3}$$

$$T = 0.00526$$

$$T \approx 0.01 s$$

For wave speed, we use

$$v = \frac{d}{t}$$

$$v = \frac{90}{0.5}$$

$$v = 180 \text{ ms}^{-1}$$

For wavelength, we use

$$v = f\lambda$$

$$180 = (190)\lambda$$

$$\frac{180}{190} = \lambda$$

$$0.947 = \lambda$$

$$\lambda = 0.95 m$$

10.8 Water waves in a shallow dish are 6.0 cm long. At one point, the water moves up and down at a rate of 4.8 oscillations per second. (a) What is the speed of the water waves? (b) What is the period of the water waves?

Given Data

Wavelength =
$$\lambda = 6 \text{ cm}$$

 $\lambda = 6 \times 10^{-2} \text{m}$
 $\lambda = 0.06 \text{ m}$

Oscillations per seco

To Find

Wave speed =
$$v = ?$$

Time period = $T = ?$

Solution

$$v = f\lambda$$

 $v = (4.8)(0.06)$
 $v = 0.29 ms^{-1}$

me period, we use

$$T = \frac{1}{f}$$

$$T = \frac{1}{4.8}$$

$$T = 0.21 \text{ s}$$

10. 9 At one end of a ripple tank 80 cm across, a 5 Hz vibrator produces waves whose wavelength is 40 mm. Find the time the waves need to cross the tank.

Given Data

Length of tank =
$$l = 80$$
 cm
 $d = 80 \times 10^{-2}$ m
 $d = 0.8$ m
Frequency = $f = 5$ Hz
Wavelength = $\lambda = 40$ mm
 $\lambda = 40 \times 10^{-3}$ m

To Find

$$Time\ taken = t = ?$$

Solution

First, we find the speed of wave

$$v = f\lambda$$

 $v = (5)(40 \times 10^{-3})$
 $v = \mathbf{0}. \ \mathbf{2} \ \mathbf{m} \mathbf{s}^{-1}$
Formula of speed
$$v = \frac{d}{t}$$

$$t = \frac{d}{v}$$

Now, by using formula of speed

$$v = \frac{d}{t}$$

$$t = \frac{d}{v}$$

$$t = \frac{0.2}{0.2}$$

10.10 What is the wavelength of the radio waves transmitted by an FM station at 90 MHz? Where $1M = 10^6$, and speed of radiowave is $3 \times$

Frequency =
$$f = 90 MHz$$

 $f = 90 \times 10^6 H$
Speed = $v = 3 \times 10^8 ms^{-1}$

To Find

$$Wavelength = \lambda = ?$$

Solution

For wavelength, we use

$$v = f\lambda$$

$$3 \times 10^8 = (90 \times 10^6)\lambda$$

$$\frac{3 \times 10^8}{90 \times 10^6} = \lambda$$

$$3.33 = \lambda$$

$$\lambda = 3.33 m$$

Examples

10.1 Find the time period and frequency of a simple pendulum 1.0 m long at a location where g = $10 \ ms^{-2}$. (ALP)

Given Data

Length of pendulum =
$$l = 1 m$$

 $g = 10 ms^{-2}$

To Find

Time period =
$$T = ?$$

Frequency = $f = ?$

Solution

By using formula of time period

$$T = 2\pi \sqrt{\frac{l}{g}}$$

$$T = 2(3.14)\sqrt{\frac{1}{10}}$$

$$T = (6.28)(0.3162)$$

 $T = 1.99 s$

For frequency, we use

$$T = \frac{1}{f}$$

$$f = \frac{1}{T}$$

$$f = \frac{1}{1.99}$$

$$f = 0.50 \text{ Hz}$$

$$Frequency = f = 4 Hz$$

 $Wavelength = \lambda = 0.4 m$

$$Wave\ speed = v = 3$$

$$v = f\lambda$$

 $v = (4)(0.4)$
 $v = 1.6 ms^{-}$

Frequency =
$$f = 2 Hz$$

Wavelength = $\lambda = 10 cm$
 $\lambda = 10 \times 00^{-2} m$
 $\lambda = 0.1 m$
Distance = $d = 2 m$

To Find

Wave
$$treed = v = ?$$

 $Tine\ taken = t = ?$

Solution

For wave s

$$v = f\lambda$$

$$v = (2)(0.1)$$

$$v = 0.2 ms^{-1}$$

by using formula of speed

$$v = \frac{d}{t}$$

$$t = \frac{d}{v}$$

$$t = \frac{2}{0.2}$$

$$t = \mathbf{10} s$$

 $\begin{array}{c} \omega(0.4)\\ \nu=1.6\ ms^{-1}\\ \text{...dent performs an experiment with waves}\\ \text{...ater. The student measures the wavelength of a wave to be 10 cm. By using a stopwatch and observing the oscillations of a floating ball, the student measures a frequency of 2 Hz. If the student starts a wave in one part of a tank of water, how long will it take the wave to reach the opposite side of the tank 2 m away? iiven Data <math display="block">\begin{array}{c} Frequency=f=2\ Hz\\ Wavelength=\lambda=10\\ \end{array}$

Prepared By: M. Tayyab, SSE (Math) Govt Christian High School, Daska.