Unit 14

Current Electricity

Numerical Problems

Important formulas

- **Electric Current** $Current = \frac{Charge}{Time} \Rightarrow I = \frac{Q}{t}$
- Ohm's Law V = IR
- **Electric Power** $Electric power = \frac{electric energy}{time}$

$$\Rightarrow P = \frac{W}{t} \text{ or } P = I^2 R \text{ or } P = IV$$

- **Electrical Energy** W = OV
- Joule's Law (Energy Supplied By Q Charge)

$$W = I^2 R t = \frac{V^2 t}{R}$$

 $W = I^2 Rt = \frac{V^2 t}{R}$ Equivalent Resistance of Series Circuit

$$R_e = R_1 + R_2$$

> Equivalent Resistance of Parallel Circuit

$$\frac{1}{R_e} = \frac{1}{R_1} + \frac{1}{R_2}$$

The amount of energy in kilowatt-hour

Energy in
$$kWh = \frac{Power(Watt) \times time\ (hours)}{1000}$$

Electricity price

$$E.P = \frac{Power(Watt) \times time (hours) \times (unit price)}{1000}$$

Monthly bill

$$Bill = \frac{Power(Watt) \times time\ (hours) \times (unit\ price) \times 30}{1000}$$

14.1. A current of 3mA is flowing through a wire for 1 minute. What is the charge flowing through the wire? (ALP)

Given Data

Current =
$$I = 3 mA$$

 $I = 3 \times 10^{-3} A$
Time = $t = 1 min$.
 $t = 60 s$

To Find

$$charae = 0 = ?$$

Solution

By using formula of current

$$I = \frac{Q}{t}$$

$$Q = It$$

$$Q = (3 \times 10^{-3})(60)$$

$$Q = 0.48 C = 180 \times 10^{-3} C$$

14.2. At $100,000 \Omega$, how much current flows through your body if you touch the terminals of a 12 Vbattery of your skin is wet, so that your resistance is only $1000~\Omega$, how much current would your receive from the same battery? (ALP)

Given Data

Dry skin resistance =
$$R_1$$
 = 100,000 Ω
Wet skin resistance = R_2 = 1000 Ω
Voltage = V = 12 V

To Find

Current through dry
$$skin = I_1 = ?$$

Current through wet $skin = I_2 = ?$

Solution

By using ohm's law

$$V = IR$$

$$I = \frac{V}{D}$$

For dry skin

$$I_1 = \frac{V}{R_1}$$

$$I_1 = \frac{12}{100,000}$$

$$I_1 = \mathbf{1.2 \times 10^{-4}} A$$

For wet skin

$$I_2 = \frac{V}{R_2}$$

$$I_2 = \frac{12}{1000}$$

$$I_2 = \mathbf{1.2 \times 10^{-2}} A$$

14.3. The resistance of a conductor wire is $10~M\Omega$. If a potential difference of 100 volts is applied across its ends, then find the value of current passing through it in mA. (ALP)

Given Data

Resistance =
$$R = 10~M\Omega$$

 $R = 10 \times 10^6~\Omega$
ntial difference = $V = 100~V$

To Find

$$Current = I = ?$$

Solution

$$V = IR$$

$$I = \frac{V}{R}$$

$$I = \frac{100}{10 \times 10^{6}}$$

$$I = 1 \times 10^{-5} A$$

$$I = 10^{-2} \times 10^{-3} A$$

$$I = 10^{-2} mA$$

$$I = 0.01 mA$$

14.4. By applying a potential difference of $10 \, V$ across a conductor, a current of 1.5 A passes through it. How much energy would be obtained from the current in *minutes* ? *(ALP)*

Given Data

Potential difference =
$$V = 10 V$$

 $Current = I = 1.5 A$
 $time = t = 2 min$
 $t = 2 \times 60 s$
 $t = 120 s$

To Find

$$Energy = W = ?$$

Solution

By using joule's law

$$W = I^{2}Rt$$

 $W = I(IR)t$
 $W = I(V)t$
 $W = (1.5)(10)(120)$
 $W = 1800 I$

14.5. Two resistances of $2~k\Omega$ and $8~k\Omega$ are joined in series, if a 10~V battery is connected across the ends of this combination, find the following quantities: (ALP)

- (i) The equivalent resistance of the series combination.
- (ii) Current passing through each of the resistances.
- (iii) The potential difference across each resistance.

Given Data

$$R_1 = 2 k\Omega$$

$$R_2 = 8 k\Omega$$

$$V = 10 V$$

To Find

$$R_{eq} = ?$$
 $I_1 = ?$, $I_2 = ?$
 $V_1 = ?$, $V_2 = ?$

Solution

By using formula of equivalent resistance for series combination

$$R_{eq} = R_1 + R_2$$

$$R_{eq} = 2 k\Omega + 8 k\Omega$$

$$R_{eq} = \mathbf{10} k\Omega$$

Current will be same for each resistance in series combination, so $I=I_1=I_2$

$$I = \frac{V}{R_{eq}}$$

$$I = \frac{10 V}{10 k\Omega}$$

$$I = \frac{10 V}{10 \times 10^3 \Omega}$$

$$I = 1 \times 10^{-3} A$$

$$I = 1 mA$$

Potential difference across 1st resistance

$$V_1 = I_1 R_1$$

 $V_1 = (1 \text{ mA})(2 \text{ k}\Omega)$
 $V_1 = (1 \times 10^{-3} \text{ A}) \times 10^3 \Omega$
 $V_1 = 2 \text{ V}$

Potential difference across Ad resistance

$$V_2 = I_2 R$$

 $V_2 = (1 mA)(8 k\Omega)$
 $V_2 = (1 \times 10^{-3} A)(8 \times 10^3 \Omega)$
 $V_2 = 8 V$

14.6. Two resistances of $6 k\Omega$ and $12 k\Omega$ are connected in parallel. A 6 V battery is connected across its ends; find the values of the following quantities: (ALP)

- (i) Equivalent resistance of the parallel combination.
- (ii) Current passing through each of the resistances.
- (iii) Potential difference across each of the resistance.

Given Data

$$R_1 = 6 k\Omega$$

$$R_2 = 12 k\Omega$$

$$V = 6 V$$

To Find

$$R_{eq} = ?$$
 $I_1 = ?$, $I_2 = ?$
 $V_1 = ?$, $V_2 = ?$

Solution

By using formula of equivalent resistance for parallel combination

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$\frac{1}{R_{eq}} = \frac{1}{6k\Omega} + \frac{1}{12k\Omega}$$

$$\frac{1}{R_{eq}} = \frac{2+1}{12k\Omega}$$

$$\frac{1}{R_{eq}} = \frac{3}{12k\Omega}$$

$$\frac{1}{R_{eq}} = \frac{1}{4k\Omega}$$

$$R_{eq} = 4k\Omega$$

 $R_{eq}=4~k\Omega$ As we know potential difference (voltage) will be same for each resistance in parallel combination, so

$$V_1 = V_2 = 6 V$$

Current through 1 resistance

$$I_1 = \frac{V_1}{R_1}$$

$$I_1 = \frac{6 V}{6 k\Omega}$$

$$I_1 = \frac{6 V}{6 \times 10^3 \Omega}$$

$$I_1 = 1 \times 10^{-3} A$$

$$I_1 = 1 mA$$

Current through 2nd resistance

$$I_{2} = \frac{V_{2}}{R_{2}}$$

$$I_{2} = \frac{6 V}{12 k\Omega}$$

$$I_{2} = \frac{6 V}{12 \times 10^{3} \Omega}$$

$$I_{2} = 0.5 \times 10^{-3} A$$

$$I_{2} = 0.5 mA$$

14.7. An electric bulb is marked with $220\,V$, $100\,W$. Find the resistance of the filament of the bulb. If the bulb is used $5\,hours$ daily, find the energy in kilowatt-hour consumed by the bulb in one month $(30\,days)$. (ALP)

Given Data

Voltage of bulb =
$$V = 220 V$$

Power = $P = 100 W$
Daily use of bulb = $t = 5 h$
No. of days = $30 days$

To Find

Resistance of bulb =
$$R = ?$$

Energy in $kWh = E = ?$

Solution

By using formula of power

$$P = I^2 R$$

$$P = \left(\frac{V}{R}\right)^{2} \times R \qquad \because I = \frac{V}{R}$$

$$P = \frac{V^{2}}{R^{2}} \times R$$

$$P = \frac{V^{2}}{R}$$

$$R = \frac{V^{2}}{P}$$

$$R = \frac{(220)^{2}}{100}$$

$$R = 484 \Omega$$

Total time in 30 days

 $time\ taken = 30 \times 5 = 150\ hours$

By using formula of energy in kWh

Energy in
$$kWh = \frac{Power(Watt) \times time \ (hours)}{1000}$$

$$Energy in $kWh = \frac{100 \ watt \times 150 \ h}{1000}$

$$Energy in $kWh = \frac{15 \ kWh}{1000}$$$$$

14.8. An incandescent light bulb with an operating resistance of $95\,\Omega$ is labeled " $150\,W$." Is this bulb designed for use in a 120 V circuit or a 220 V circuit? **Given Data**

Resistance =
$$R = 95 \Omega$$

Power = $P = 150 W$

To Find

$$Voltage = V = ?$$

Solution

By using formula of power

$$P = \frac{V^2}{R}$$

$$V^2 = P \times R$$

$$V^2 = 150 \times 95$$

$$V^2 = 14250$$

$$\sqrt{V^2} = \sqrt{14250}$$

$$V = 119.3 V$$

$$V \approx 120 V$$

This bulb is designed for 120 V

- 14.9. A house is installed with
- (a) 10 bulbs of 60 Weach of which are used 5 hours
- (b) 4 fans of 75 weach of which run 10 hours daily.
- (c) One T. V. of 100 W which is used for 5 hours daily.
- (d) One electric iron of 1000 W which is used for 2 hours daily.

If the cost of one unit of electricity is Rs.4. Find the monthly expenditure of electricity (one month =30 days).

Given Data

Power of 10 bulb =
$$60 W \times 10$$
 = $600 W$ t = $5 h$
Power of 4 fans = $75 W \times 4$ = $300 W$ t = $10 h$
Power of 1 T.V = $100 W \times 1$ = $100 W$ t = $5 h$
Power of 1 iron = $1000 W \times 1$ = $1000 W$ t = $2 h$
One unit price = $Rs.4$

To Find

Monthly cost of electricity (30 days) = ?Solution

Prepared By: M. Tayyab, SSE (Math) Govt Christian High School, Daska.

Monthly electricity cost of fans =
$$\frac{Power(W) \times time(h) \times (price) \times 30}{300 \times 10 \times 4 \times 30}$$

$$= \frac{300 \times 10 \times 4 \times 30}{1000}$$

$$= 360 Rs.$$

Monthly electricity cost of T.V =
$$\frac{Power(W) \times time\ (h) \times (price) \times 30}{1000}$$
$$= \frac{100 \times 5 \times 4 \times 30}{1000}$$
$$= 60\ Rs.$$

Monthly electricity cost of iron =
$$\frac{Power(W) \times time (h) \times (m \cdot ce) \times 30}{1000 \times 2 \times 1000}$$
$$= \frac{1000 \times 2 \times 1000}{1000}$$
$$= 240 Rs$$

Monthly cost of electricity 360 + 360 + 60 + 240

14.10. A $100\,W$ lamp bulb and a $4\,kW$ water heater are connected to 250 V supply. Calculate

- (a) The current which flows in each appliance
- (b) The resistance of each appliance when in use. Given Data

Power of bulb =
$$P_1 = 100 W$$

Power of water heater = $P_2 = 4 kW$
 $P_2 = 4 \times 10^3 W$
 $Voltage = V = 250 V$

To Find

(a)
$$I_1 = ?$$
 $I_2 = ?$ (b) $R_1 = ?$ $R_2 = ?$

Solution

Current in lamp

$$P_{1} = I_{1}V$$

$$I_{1} = \frac{P_{1}}{V}$$

$$I_{1} = \frac{100}{250}$$

$$I_{1} = \mathbf{0.4} A$$

Current in heater

$$P_{2} = I_{2}V$$

$$I_{2} = \frac{P_{2}}{V}$$

$$I_{2} = \frac{4 \times 10^{3}}{250}$$

$$I_{2} = 16 A$$

Resistance in lamp

$$V = I_1 R_1$$

$$R_1 = \frac{V}{I_1}$$

$$R_1 = \frac{250}{0.4}$$

$$R_1 = 625 \Omega$$

Resistance in heater

$$V = I_2 R_2$$

$$R_2 = \frac{V}{I_2}$$

$$R_2 = \frac{250}{16}$$
$$R_2 = 15.6 \Omega$$

14.11. A resistor of resistance $5.6\,\Omega$ is connected across a battery of $3.0\,V$ by means of a wire of negligible resistance. A current of $0.5\,A$ passes through the resistor. Calculate

- (a) Power dissipated in the resistor.
- (b) Total power produced by the battery.
- (c) Give the reason of difference between these two quantities.

Given Data

Resistance of resistor =
$$R = 5.6 \Omega$$

 $Voltage = V = 3.0 V$
 $Current = I = 0.5 A$

To Find

Power dissipated =
$$P_d$$
 = ?
Power of battery = P = ?

Solution

For power dissipated, we use

$$P_d = I^2 R$$

 $P_d = (0.5)^2 (5.6)$
 $P_d = 1.4 W$

For battery power, we use

$$P = IV$$

 $P = (0.5)(3.0)$
 $P = 1.5 W$

A little amount of power is lost due to internal resistance of battery.

Examples

14.1 If 0.5 C charge passes through a wire in 10 s, then what will be the value of current flowing through the wire? (ALP)

Given Data

$$Charge = Q = 0.5$$

 $Time = t = 10$

To Find

$$Current = V = C$$

Solution

By using formula of current

$$I = \frac{0.5}{10}$$

$$I = 0.05 A$$

$$I = 50 \times 10^{-3} A$$

$$I = 50 mA$$

14.2 Reading on voltmeter connected across a heating element is $60\,V$. The amount of current passing through the heating element measured by an ammeter is $2\,A$. What is the resistance of the heating coil of the element? (ALP)

Given Data

$$Voltage = V = 60 V$$

 $Current = I = 2 A$

To Find

$$Resistance = R = ?$$

Solution

By using ohm's law

$$V = IR$$

$$60 = (2)(R)$$

$$\frac{60}{2} = R$$

$$30 = R$$

$$R = 30 \Omega$$

14.3 If the length of copper wire is 1 m and its diameter is 2 mm, then find the resistance of this copper wire.

Given Data

Length = L = 1 m
Diameter = d = 2 mm
Radius =
$$r = \frac{2 mn}{2}$$

 $r = 1 mm$

Specific resistance of copp $\rho = \rho = 1.69 \times 10^{-8} \Omega m$

To Find

$$Resistance = R = ?$$

Solution

First, we find cross sectional area of the wire

$$A = \pi r^{2}$$

$$A = (3.14)(1 \times 10^{-3})^{2}$$

$$A = 3.14 \times 10^{-6} m^{2}$$

A =Now, for resistance

$$R = \frac{\rho L}{A}$$

$$R = \frac{(1.69 \times 10^{-8})(1)}{3.14 \times 10^{-6}}$$

$$R = 5.4 \times 10^{-3} \Omega$$

14.4 If two resistors of $6~k\Omega$ and $4~k\Omega$ are connected in series across a 10~V battery, then find the following quantities: (ALP)

- (a) Equivalent resistance of the series combination.
- (b) The current flowing through each of the resistance.
- (c) Potential difference across each of the resistances.

Given Data

$$R_1 = 6 k\Omega$$

$$R_2 = 4 k\Omega$$

$$V = 10 V$$

To Find

$$R_{eq} = ?$$
 $I_1 = ?$, $I_2 = ?$
 $V_1 = ?$, $V_2 = ?$

Solution

By using formula of equivalent resistance for series combination

$$R_{eq} = R_1 + R_2$$

$$R_{eq} = 6 k\Omega + 4 k\Omega$$

$$R_{eq} = 10 k\Omega$$

Current will be same for each resistance in series combination, so $I = I_1 = I_2$

$$= I_1 = I_2$$

$$I = \frac{V}{R_{eq}}$$

$$I = \frac{10 V}{10 k\Omega}$$

$$I = \frac{10 V}{10 \times 10^3 \Omega}$$

$$I = 1 \times 10^{-3} A$$

$$I = 1 mA$$

Potential difference across 1st resistance

$$V_1 = I_1 R_1$$

 $V_1 = (1 mA)(6 k\Omega)$
 $V_1 = (1 \times 10^{-3} A)(6 \times 10^3 \Omega)$
 $V_1 = 6 V$

Potential difference across 2nd resistance

$$V_2 = I_2 R_2$$

 $V_2 = (1 mA)(4 k\Omega)$
 $V_2 = (1 \times 10^{-3} A)(4 \times 10^3 \Omega)$
 $V_2 = 4 V$

14.5 If in the circuit (Figure), $R_1=2~\Omega,~R_2=3~\Omega,$

$$R_3 = 6 \Omega$$
, and $V = 6 V$,
then find the following
quantities: *(ALP)*

(a) equivalent resistance of the circuit.

$$R_1 = 2 \Omega$$

$$R_2 = 3 \Omega$$

$$R_3 = 6 \Omega$$

$$V = 6 V$$

To Find

Given Data

$$R_{eq} = ?$$
 $V_1 = ?, V_2 = ?, V_3 = ?$
 $I_1 = ?, I_2 = ?, V_3 = ?$

Solution

By using formula of equivalent resistance for parallel combination

As we know potential difference (voltage) will be same for each resistance in parallel combination, so

$$V = V_1 = V_2 = V_3 = 6 V$$

Current through 1st resistance

$$I_1 = \frac{V_1}{R_1}$$

$$I_1 = \frac{6 V}{2 \Omega}$$
$$I_1 = 3 A$$

Current through 2nd resistance

$$I_2 = \frac{V_2}{R_2}$$

$$I_2 = \frac{6 V}{3 \Omega}$$

$$I_2 = 2 A$$

Current through 3rd resistance

$$I_3 = \frac{V_3}{R_3}$$
$$I_3 = \frac{6 V}{6 \Omega}$$
$$I_3 = \mathbf{1} A$$

14.6 If a current of 0.5 A passes through a bulb connected across a battery of 6V for 20 seconds, then find the rate of energy transferred to the bulb. Also find the resistance of the bulb. **Given Data**

Current =
$$I = 0.5 A$$

Potential difference = $V = 6 V$
time = $t = 20 s$

To Find

y transferred(Power) = P = ?

Solutio

By using joule's law

$$W = I^{2}Rt$$

$$W = I(IR)t$$

$$W = I(V)t$$

$$W = (0.5)(6)(20)$$

$$W = 60 J$$

Now by using formula of power

$$P = \frac{W}{t}$$

$$P = \frac{60}{20}$$

$$P = 3 wa$$

Again by using joule's law

$$W = I^{2}Rt$$

$$\frac{W}{I^{2}t} = R$$

$$R = \frac{W}{I^{2}t}$$

$$R = \frac{60}{(0.5)^{2}(20)}$$

$$R = 12 \Omega$$

14.7 The resistance of an electric bulb is $500~\Omega$. Find the power consumed by the bulb when a potential difference of 250 V is applied across its ends.

Resistance of bulb =
$$R = 500 \Omega$$

Potential difference = $V = 250 V$

To Find

$$Power = P = ?$$

Solution

By using formula of power

$$P = I^{2}R$$

$$P = \left(\frac{V}{R}\right)^{2} \times R$$

$$P = \frac{V^{2}}{R^{2}} \times R$$

$$P = \frac{V^{2}}{R}$$

$$P = \frac{V^{2}}{R}$$

$$P = \frac{(250)^{2}}{500}$$

$$P = 125 W \qquad (watt)$$

$$Power = P = 50 W$$

 $Time\ in\ hours = t = 8\ h$
 $One\ unit\ price = P = Rs.\ 12$

Monthly electricity cost of bulb =
$$\frac{Power(W) \times time (h) \times (price) \times 30}{1000}$$
$$= \frac{50 \times 8 \times 12 \times 30}{1000}$$
$$= 144 Rs$$

Hira Science Academy For Educational Use Only

Prepared By: M. Tayyab, SSE (Math) Govt Christian High School, Daska. Mobile: 03338114798

Website: https://hira-science-academy.github.io

Page **6** of **6**