Unit 1: Real Numbers

Class 9 Mathematics | Punjab Curriculum and Textbook Board Syllabus 2025

1. Define rational numbers.

The number of the form \( \frac{p}{q} \) where \( p,q \) are integers and \( q \neq 0 \) are called rational numbers.

Examples: \( \frac{2}{9}, \quad 7, \quad \sqrt{\frac{25}{16}} \)

\( Q = \left\{ x|x = \frac{p}{q}, \quad p,q \in \mathbb{Z} \land q \neq 0 \right\} \)

2. Define irrational numbers.

The number which cannot be expressed in the form \( \frac{p}{q} \) where \( p,q \) are integers and \( q \neq 0 \) are called irrational numbers.

Examples: \( e, \quad \pi, \quad \sqrt{2} \)

\( Q' = \left\{ x|x \neq \frac{p}{q}, \quad p,q \in \mathbb{Z} \land q \neq 0 \right\} \)

3. Define set of real numbers.

The union of the set of rational numbers and irrational numbers is known as the set of real numbers. It is denoted by \( \mathbb{R} \).

\( \mathbb{R} = Q \cup Q' \)

Real numbers diagram

4. Explain decimal representation of rational numbers.

The decimal representations of rational numbers are of two types:

  1. Terminating Decimal Fractions:

    The decimal number with a finite number of digits after the decimal point is called a terminating decimal number.

    Examples:

    \( \frac{2}{5} = 0.4 \) and \( \frac{3}{8} = 0.375 \)

  2. Recurring and Non-Terminating Decimal Fractions:

    The decimal numbers with an infinitely repeating pattern of digits after the decimal point are called non-terminating and recurring decimal numbers.

    Examples:

    \( \frac{1}{3} = 0.333\ldots = 0.\overline{3} \) (3 repeats infinitely)

    \( \frac{1}{6} = 0.166\ldots = 0.1\overline{6} \) (6 repeats infinitely)

    \( \frac{22}{7} = 3.142857142857\ldots = 3.\overline{142857} \) (the pattern 142857 repeats infinitely)

5. What are irrational numbers in terms of their decimal representation?

Decimal numbers that do not repeat a pattern of digits after the decimal point continue indefinitely without terminating.

Non-terminating and non-recurring decimal numbers are known as irrational numbers.

Examples:

  • \( \pi = 3.1415926535897932\ldots \)
  • \( e = 2.71828182845904\ldots \)
  • \( \sqrt{2} = 1.41421356237309\ldots \)

Note:

  1. \( e = 2.7182\ldots \) is called Euler's Number.
  2. Rational number + Irrational number = Irrational number.
  3. Rational number (≠ 0) × Irrational number = Irrational number.
  4. The product of two irrational numbers can be either rational or irrational, depending on the numbers involved.

6. Explain the concept of radicals and radicands.

If \( n \) is a positive integer greater than 1 and \( a \) is a real number, then any real number \( x \) such that \( x^{n} = a \) is called (radical) the \( n^{th} \) root of \( a \), and in symbols is written as:

\( x^{n} = a \)

\( \left[ x^{n} \right]^{\frac{1}{n}} = \left[ a \right]^{\frac{1}{n}} \)

\( x = a^{\frac{1}{n}} \)

\( x = \sqrt[n]{a} \)

In the radical \( \sqrt[n]{a} \), the symbol \( \sqrt{} \) is called the radical sign, \( n \) is called the index of the radical and the real number \( a \) under the radical sign is called the radicand or base.

7. Define surd.

An irrational radical with rational radicand is called a surd.

Examples of surds:

  • \( \sqrt{5} \) (does not give a whole number)
  • \( \sqrt{3}, \quad \sqrt[3]{7} \)

Not surds:

  • \( \sqrt{9} \) (simplifies to 3, a whole number)
  • \( \sqrt{\pi}, \quad \sqrt{e} \)

Note: Every surd is an irrational number, but not every irrational number is a surd (e.g., \( \sqrt{\pi} \) is irrational but not a surd) and the product of two conjugate surds is a rational number.

8. Monomial Surd

A surd which contains a single term.

Examples: \( \sqrt{2}, \quad \sqrt{3} \)

9. Binomial Surd

A surd which contains sum of two monomial surds or sum of a monomial surd and a rational number.

Examples: \( \sqrt{2} + \sqrt{7}, \quad \sqrt{2} + 5 \)

10. Conjugate Surd

Conjugate surd of \( \sqrt{a} + \sqrt{b} \) is defined as \( \sqrt{a} - \sqrt{b} \).

11. What are the additive properties of real numbers?

Name of the Property ∀ a, b, c ∈ ℝ Examples
Closure \( a + b \in \mathbb{R} \) \( 2 + 3 = 5 \in \mathbb{R} \)
Commutative \( a + b = b + a \) \( 2 + 5 = 5 + 2 \)
\( 7 = 7 \)
Associative \( a + (b + c) = (a + b) + c \) \( 2 + (3 + 5) = (2 + 3) + 5 \)
\( 2 + 8 = 5 + 5 \)
\( 10 = 10 \)
Identity \( a + 0 = a = 0 + a \) \( 5 + 0 = 5 = 0 + 5 \)
Inverse \( a + (-a) = (-a) + a = 0 \) \( 6 + (-6) = (-6) + 6 = 0 \)

12. What are the multiplicative properties of real numbers?

Name of the Property ∀ a, b, c ∈ ℝ Examples
Closure \( ab \in \mathbb{R} \) \( 2 \times 5 = 10 \in \mathbb{R} \)
Commutative \( ab = ba \) \( 2 \times 5 = 5 \times 2 \)
\( 10 = 10 \)
Associative \( a(bc) = (ab)c \) \( 2 \times (3 \times 5) = (2 \times 3) \times 5 \)
\( 2 \times 15 = 6 \times 5 \)
\( 30 = 30 \)
Identity \( a \times 1 = a = 1 \times a \) \( 5 \times 1 = 5 = 1 \times 5 \)
Inverse \( a \times \frac{1}{a} = \frac{1}{a} \times a = 1 \) \( 6 \times \frac{1}{6} = \frac{1}{6} \times 6 = 1 \)

Note:

  1. \( 0 \) and \( 1 \) are the additive and multiplicative identities of real numbers, respectively.
  2. \( 0 \in \mathbb{R} \) has no multiplicative inverse.

13. What are the distributive properties of real numbers?

Property Mathematical Expression
Left Distributive Property of Multiplication over Addition \( a(b + c) = ab + ac \)
Left Distributive Property of Multiplication over Subtraction \( a(b - c) = ab - ac \)
Right Distributive Property of Multiplication over Addition \( (a + b)c = ac + bc \)
Right Distributive Property of Multiplication over Subtraction \( (a - b)c = ac - bc \)

14. What are the properties of equality of real numbers?

No. Property Name Mathematical Expression
i Reflexive Property \( \forall a \in \mathbb{R}, \quad a = a \)
ii Symmetric Property \( \forall a,b \in \mathbb{R}, \)
\( a = b \Rightarrow b = a \)
iii Transitive Property \( \forall a,b,c \in \mathbb{R}, \)
\( a = b \land b = c \Rightarrow a = c \)
iv Additive Property \( \forall a,b,c \in \mathbb{R}, \)
\( a = b \Rightarrow a + c = b + c \)
v Multiplicative Property \( \forall a,b,c \in \mathbb{R}, \)
\( a = b \Rightarrow ac = bc \)
vi Cancellation Property w.r.t Addition \( \forall a,b,c \in \mathbb{R}, \)
\( a + c = b + c \Rightarrow a = b \)
vii Cancellation Property w.r.t Multiplication \( \forall a,b,c \in \mathbb{R}, \)
\( ac = bc \Rightarrow a = b \)

15. State and explain the Multiplicative Property of order with examples.

No. Property Name Mathematical Expression
i Trichotomy Property \( \forall a,b \in \mathbb{R}, \)
Either \( a = b \) or \( a > b \) or \( a < b \)
ii Transitive Property \( \forall a,b,c \in \mathbb{R}, \)
- \( a > b \land b > c \Rightarrow a > c \)
- \( a < b \land b < c \Rightarrow a < c \)
iii Additive Property \( \forall a,b,c \in \mathbb{R}, \)
- \( a > b \Rightarrow a + c > b + c \)
- \( a < b \Rightarrow a + c < b + c \)
iv Multiplicative Property \( \forall a,b,c \in \mathbb{R}, \)
- \( a > b \Rightarrow ac > bc \) if \( c > 0 \)
- \( a < b \Rightarrow ac < bc \) if \( c > 0 \)
- \( a > b \Rightarrow ac < bc \) if \( c < 0 \)
- \( a < b \Rightarrow ac > bc \) if \( c < 0 \)
- \( a > b \land c > d \Rightarrow ac > bd \)
- \( a < b \land c < d \Rightarrow ac < bd \)
v Division Property \( \forall a,b,c \in \mathbb{R}, \)
- \( a > b \Rightarrow \frac{a}{c} > \frac{b}{c} \) if \( c > 0 \)
- \( a < b \Rightarrow \frac{a}{c} < \frac{b}{c} \) if \( c > 0 \)
- \( a > b \Rightarrow \frac{a}{c} < \frac{b}{c} \) if \( c < 0 \)
- \( a < b \Rightarrow \frac{a}{c} > \frac{b}{c} \) if \( c < 0 \)
vi Reciprocal Property \( \forall a,b \in \mathbb{R} \) and have same sign
- \( a > b \Rightarrow \frac{1}{a} < \frac{1}{b} \)
- \( a < b \Rightarrow \frac{1}{a} > \frac{1}{b} \)

16. Write the Laws of Radicals and Indices.

Laws of Radical Laws of Indices
(i) \( \sqrt[n]{ab} = \sqrt[n]{a} \cdot \sqrt[n]{b} \) (i) \( a^{m} \cdot a^{n} = a^{m + n} \)
(ii) \( \sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}} \) (ii) \( \left( a^{m} \right)^{n} = a^{mn} \)
(iii) \( \sqrt[n]{a^{m}} = \left( \sqrt[n]{a} \right)^{m} \) (iii) \( (ab)^{n} = a^{n}b^{n} \)
(iv) \( \left( \sqrt[n]{a} \right)^{n} = \left( a^{\frac{1}{n}} \right)^{n} = a \) (iv) \( \left( \frac{a}{b} \right)^{n} = \frac{a^{n}}{b^{n}} \)
(v) \( \frac{a^{m}}{a^{n}} = a^{m - n} \)
(vi) \( a^{0} = 1 \)

17. Is 0 a rational number? Explain.

Yes, 0 is a rational number because it can be written in the form \( \frac{p}{q} \), where \( p \) and \( q \) are integers and \( q \neq 0 \).

Examples: \( \frac{0}{1}, \frac{0}{2}, \frac{0}{3} \), etc., are valid rational numbers.

Since 0 divided by any nonzero integer is always 0, it satisfies the definition of a rational number.